Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 181(5): 1062-1079.e30, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32386547

RESUMO

Expansions of amino acid repeats occur in >20 inherited human disorders, and many occur in intrinsically disordered regions (IDRs) of transcription factors (TFs). Such diseases are associated with protein aggregation, but the contribution of aggregates to pathology has been controversial. Here, we report that alanine repeat expansions in the HOXD13 TF, which cause hereditary synpolydactyly in humans, alter its phase separation capacity and its capacity to co-condense with transcriptional co-activators. HOXD13 repeat expansions perturb the composition of HOXD13-containing condensates in vitro and in vivo and alter the transcriptional program in a cell-specific manner in a mouse model of synpolydactyly. Disease-associated repeat expansions in other TFs (HOXA13, RUNX2, and TBP) were similarly found to alter their phase separation. These results suggest that unblending of transcriptional condensates may underlie human pathologies. We present a molecular classification of TF IDRs, which provides a framework to dissect TF function in diseases associated with transcriptional dysregulation.


Assuntos
Expansão das Repetições de DNA/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Alanina/genética , Animais , Sequência de Bases/genética , Expansão das Repetições de DNA/fisiologia , Modelos Animais de Doenças , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Mutação/genética , Linhagem , Sindactilia/genética , Fatores de Transcrição/metabolismo
2.
Mol Cell ; 64(6): 1035-1047, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27889453

RESUMO

The molecular machinery responsible for DNA replication, the replisome, must efficiently coordinate DNA unwinding with priming and synthesis to complete duplication of both strands. Due to the anti-parallel nature of DNA, the leading strand is copied continuously, while the lagging strand is produced by repeated cycles of priming, DNA looping, and Okazaki-fragment synthesis. Here, we report a multidimensional single-molecule approach to visualize this coordination in the bacteriophage T7 replisome by simultaneously monitoring the kinetics of loop growth and leading-strand synthesis. We show that loops in the lagging strand predominantly occur during priming and only infrequently support subsequent Okazaki-fragment synthesis. Fluorescence imaging reveals polymerases remaining bound to the lagging strand behind the replication fork, consistent with Okazaki-fragment synthesis behind and independent of the replication complex. Individual replisomes display both looping and pausing during priming, reconciling divergent models for the regulation of primer synthesis and revealing an underlying plasticity in replisome operation.


Assuntos
Bacteriófago T7/genética , DNA Primase/genética , Replicação do DNA , DNA Viral/genética , Bacteriófago T7/metabolismo , Bacteriófago T7/ultraestrutura , DNA/biossíntese , DNA/genética , DNA Primase/metabolismo , DNA Primase/ultraestrutura , DNA Viral/metabolismo , DNA Viral/ultraestrutura , Cinética , Imagem Individual de Molécula/métodos , Imagem com Lapso de Tempo/métodos
3.
Nat Methods ; 13(6): 481-2, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27243471

Assuntos
Microscopia , Humanos
4.
Methods Mol Biol ; 1300: 219-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25916715

RESUMO

Replication of DNA requires the coordinated activity of a number of proteins within a multiprotein complex, the replisome. Recent advances in single-molecule techniques have enabled the observation of dynamic behavior of individual replisome components and of the replisome as a whole, aspects that previously often have been obscured by ensemble averaging in more classical solution-phase biochemical experiments. To improve robustness and reproducibility of single-molecule assays of replication and allow objective analysis and comparison of results obtained from such assays, common practices should be established. Here, we describe the technical details of two assays to study replisome activity. In one, the kinetics of replication are observed as length changes in DNA molecules mechanically stretched by a laminar flow applied to attached beads. In the other, fluorescence imaging is used to determine both the kinetics and stoichiometry of individual replisome components. These in vitro single-molecule methods allow for elucidation of the dynamic behavior of individual replication proteins of prokaryotic replication systems.


Assuntos
Replicação do DNA , Imagem Molecular/métodos , Células Procarióticas/metabolismo , DNA/metabolismo , Microesferas , Estatística como Assunto
5.
Biophys J ; 108(4): 949-956, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692599

RESUMO

Single-molecule fluorescence microscopy is a powerful tool for observing biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Making use of short-distance energy-transfer mechanisms, only the fluorescence from those proteins that bind to their substrate is activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease on DNA in the presence of a background of hundreds of nanomolar Cy5 fluorophore.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Proteínas Nucleares/química , Fosfoproteínas/química , DNA/química , DNA/metabolismo , Microscopia de Fluorescência/métodos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica
6.
Proc Natl Acad Sci U S A ; 111(11): 4073-8, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591606

RESUMO

Replication of DNA plays a central role in transmitting hereditary information from cell to cell. To achieve reliable DNA replication, multiple proteins form a stable complex, known as the replisome, enabling them to act together in a highly coordinated fashion. Over the past decade, the roles of the various proteins within the replisome have been determined. Although many of their interactions have been characterized, it remains poorly understood how replication proteins enter and leave the replisome. In this study, we visualize fluorescently labeled bacteriophage T7 DNA polymerases within the replisome while we simultaneously observe the kinetics of the replication process. This combination of observables allows us to monitor both the activity and dynamics of individual polymerases during coordinated leading- and lagging-strand synthesis. Our data suggest that lagging-strand polymerases are exchanged at a frequency similar to that of Okazaki fragment synthesis and that two or more polymerases are present in the replisome during DNA replication. Our studies imply a highly dynamic picture of the replisome with lagging-strand DNA polymerases residing at the fork for the synthesis of only a few Okazaki fragments. Further, new lagging-strand polymerases are readily recruited from a pool of polymerases that are proximally bound to the replisome and continuously replenished from solution.


Assuntos
Bacteriófago T7/fisiologia , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multiproteicos/metabolismo , DNA/metabolismo , Fluorescência , Ligação Proteica , Fatores de Tempo
7.
Nat Chem ; 6(1): 28-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24345943

RESUMO

The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalysed DNA elongation. Here, we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription.


Assuntos
Biopolímeros/química , Citidina Desaminase/metabolismo , Desaminase APOBEC-3G , Citidina Desaminase/química , Desaminação , HIV-1/fisiologia , Humanos , DNA Polimerase Dirigida por RNA/metabolismo , Replicação Viral
8.
Curr Opin Struct Biol ; 23(5): 788-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23890728

RESUMO

Recent advances in the development of single-molecule approaches have made it possible to study the dynamics of biomolecular systems in great detail. More recently, such tools have been applied to study the dynamic nature of large multi-protein complexes that support multiple enzymatic activities. In this review, we will discuss single-molecule studies of the replisome, the protein complex responsible for the coordinated replication of double-stranded DNA. In particular, we will focus on new insights obtained into the dynamic nature of the composition of the DNA-replication machinery and how the dynamic replacement of components plays a role in the regulation of the DNA-replication process.


Assuntos
Replicação do DNA/fisiologia , Modelos Biológicos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica
9.
Nucleic Acids Res ; 40(2): 751-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21917850

RESUMO

Reverse transcription in retroviruses and retrotransposons requires nucleic acid chaperones, which drive the rearrangement of nucleic acid conformation. The nucleic acid chaperone properties of the human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein have been extensively studied, and nucleic acid aggregation, duplex destabilization and rapid binding kinetics have been identified as major components of its activity. However, the properties of other nucleic acid chaperone proteins, such as retrotransposon Ty3 NC, a likely ancestor of HIV-1 NC, are not well understood. In addition, it is unclear whether a single zinc finger is sufficient to optimize the properties characteristic of HIV-1 NC. We used single-molecule DNA stretching as a method for detailed characterization of Ty3 NC chaperone activity. We found that wild type Ty3 NC aggregates single- and double-stranded DNA, weakly stabilizes dsDNA, and exhibits rapid binding kinetics. Single-molecule studies in the presence of Ty3 NC mutants show that the N-terminal basic residues and the unique zinc finger at the C-terminus are required for optimum chaperone activity in this system. While the single zinc finger is capable of optimizing Ty3 NC's DNA interaction kinetics, two zinc fingers may be necessary in order to facilitate the DNA destabilization exhibited by HIV-1 NC.


Assuntos
DNA/metabolismo , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Retroelementos , Dedos de Zinco , Sequência de Aminoácidos , Cinética , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/genética , Deleção de Sequência , Leveduras/genética
10.
Proc Natl Acad Sci U S A ; 106(24): 9673-8, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19487681

RESUMO

Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze the structural and mechanical properties of scaffold-containing (B), empty (A), and DNA-containing (C) nuclear capsids. Atomic force microscopy experiments revealed that A and C capsids were mechanically indistinguishable, indicating that the presence of DNA does not account for changes in mechanical properties during capsid maturation. Despite having the same rigidity, the scaffold-containing B capsids broke at significantly lower forces than A and C capsids. An extraction of pentons with guanidine hydrochloride (GuHCl) increased the flexibility of all capsids. Surprisingly, the breaking forces of the modified A and C capsids dropped to similar values as those of the GuHCl-treated B capsids, indicating that mechanical reinforcement occurs at the vertices. Nonetheless, it also showed that HSV1 capsids possess a remarkable structural integrity that was preserved after removal of pentons. We suggest that HSV1 capsids are stabilized after removal of the scaffold proteins, and that this stabilization is triggered by the packaging of DNA, but independent of the actual presence of DNA.


Assuntos
Capsídeo , Genoma Viral , Herpesvirus Humano 1/genética , Montagem de Vírus , Animais , Western Blotting , Linhagem Celular , Cricetinae , DNA Viral/genética , Eletroforese em Gel de Poliacrilamida , Microscopia de Força Atômica , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...